Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 41(7): 919-931, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36593411

RESUMO

Ultrasound allows imaging at a much greater depth than optical methods, but existing genetically encoded acoustic reporters for in vivo cellular imaging have been limited by poor sensitivity, specificity and in vivo expression. Here we describe two acoustic reporter genes (ARGs)-one for use in bacteria and one for use in mammalian cells-identified through a phylogenetic screen of candidate gas vesicle gene clusters from diverse bacteria and archaea that provide stronger ultrasound contrast, produce non-linear signals distinguishable from background tissue and have stable long-term expression. Compared to their first-generation counterparts, these improved bacterial and mammalian ARGs produce 9-fold and 38-fold stronger non-linear contrast, respectively. Using these new ARGs, we non-invasively imaged in situ tumor colonization and gene expression in tumor-homing therapeutic bacteria, tracked the progression of tumor gene expression and growth in a mouse model of breast cancer, and performed gene-expression-guided needle biopsies of a genetically mosaic tumor, demonstrating non-invasive access to dynamic biological processes at centimeter depth.


Assuntos
Neoplasias , Animais , Camundongos , Genes Reporter/genética , Filogenia , Neoplasias/genética , Neoplasias/terapia , Bactérias/genética , Acústica , Mamíferos
2.
ACS Synth Biol ; 11(7): 2518-2522, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35708251

RESUMO

Temperature is a versatile input signal for the control of engineered cellular functions. Sharp induction of gene expression with heat has been established using bacteria- and phage-derived temperature-sensitive transcriptional repressors with tunable switching temperatures. However, few temperature-sensitive transcriptional activators have been reported that enable direct gene induction with cooling. Such activators would expand the application space for temperature control. In this technical note, we show that temperature-dependent versions of the Lambda phage repressor CI can serve as tunable cold-actuated transactivators. Natively, CI serves as both a repressor and activator of transcription. Previously, thermolabile mutants of CI, known as the TcI family, were used to repress the cognate promoters PR and PL. We hypothesized that TcI mutants can also serve as temperature-sensitive activators of transcription at CI's natural PRM promoter, creating cold-inducible operons with a tunable response to temperature. Indeed, we demonstrate temperature-responsive activation by two variants of TcI with set points at 35.5 and 38.5 °C in E. coli. In addition, we show that TcI can serve as both an activator and a repressor of different genes in the same genetic circuit, leading to opposite thermal responses. Transcriptional activation by TcI expands the toolbox for control of cellular function using globally or locally applied thermal inputs.


Assuntos
Bacteriófago lambda , Escherichia coli , Bacteriófago lambda/genética , Escherichia coli/genética , Proteínas Repressoras , Temperatura , Transcrição Gênica/genética , Ativação Transcricional/genética , Proteínas Virais Reguladoras e Acessórias
3.
Nat Commun ; 13(1): 1585, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332124

RESUMO

Rapid advances in synthetic biology are driving the development of genetically engineered microbes as therapeutic agents for a multitude of human diseases, including cancer. The immunosuppressive microenvironment of solid tumors, in particular, creates a favorable niche for systemically administered bacteria to engraft and release therapeutic payloads. However, such payloads can be harmful if released outside the tumor in healthy tissues where the bacteria also engraft in smaller numbers. To address this limitation, we engineer therapeutic bacteria to be controlled by focused ultrasound, a form of energy that can be applied noninvasively to specific anatomical sites such as solid tumors. This control is provided by a temperature-actuated genetic state switch that produces lasting therapeutic output in response to briefly applied focused ultrasound hyperthermia. Using a combination of rational design and high-throughput screening we optimize the switching circuits of engineered cells and connect their activity to the release of immune checkpoint inhibitors. In a clinically relevant cancer model, ultrasound-activated therapeutic microbes successfully turn on in situ and induce a marked suppression of tumor growth. This technology provides a critical tool for the spatiotemporal targeting of potent bacterial therapeutics in a variety of biological and clinical scenarios.


Assuntos
Imunoterapia , Neoplasias , Bactérias/genética , Engenharia Genética , Humanos , Neoplasias/terapia , Biologia Sintética , Microambiente Tumoral
4.
Nat Nanotechnol ; 16(12): 1403-1412, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34580468

RESUMO

Recent advances in molecular engineering and synthetic biology provide biomolecular and cell-based therapies with a high degree of molecular specificity, but limited spatiotemporal control. Here we show that biomolecules and cells can be engineered to deliver potent mechanical effects at specific locations inside the body through ultrasound-induced inertial cavitation. This capability is enabled by gas vesicles, a unique class of genetically encodable air-filled protein nanostructures. We show that low-frequency ultrasound can convert these biomolecules into micrometre-scale cavitating bubbles, unleashing strong local mechanical effects. This enables engineered gas vesicles to serve as remotely actuated cell-killing and tissue-disrupting agents, and allows genetically engineered cells to lyse, release molecular payloads and produce local mechanical damage on command. We demonstrate the capabilities of biomolecular inertial cavitation in vitro, in cellulo and in vivo, including in a mouse model of tumour-homing probiotic therapy.


Assuntos
Acústica , Gases/química , Técnicas Genéticas , Microbolhas , Animais , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Feminino , Humanos , Imunoterapia , Camundongos Endogâmicos BALB C , Imagem Óptica , Probióticos/farmacologia , Receptores de Superfície Celular/metabolismo , Ultrassonografia
5.
Adv Mater ; 33(17): e2007473, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33709508

RESUMO

Engineered probiotics have the potential to diagnose and treat a variety of gastrointestinal (GI) diseases. However, these exogenous bacterial agents have limited ability to effectively colonize specific regions of the GI tract due to a lack of external control over their localization and persistence. Magnetic fields are well suited to providing such control, since they freely penetrate biological tissues. However, they are difficult to apply with sufficient strength to directly manipulate magnetically labeled cells in deep tissue such as the GI tract. Here, it is demonstrated that a composite biomagnetic material consisting of microscale magnetic particles and probiotic bacteria, when orally administered and combined with an externally applied magnetic field, enables the trapping and retention of probiotic bacteria within the GI tract of mice. This technology improves the ability of these probiotic agents to accumulate at specific locations and stably colonize without antibiotic treatment. By enhancing the ability of GI-targeted probiotics to be at the right place at the right time, cellular localization assisted by magnetic particles (CLAMP) adds external physical control to an important emerging class of microbial theranostics.


Assuntos
Bactérias , Trato Gastrointestinal , Fenômenos Magnéticos , Probióticos , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...